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■ Summary Isoflavones, rich in
soybean, are currently receiving
much attention because of their
potential role in preventing and
treating cancer and other human
chronic diseases. The present re-
view provides an overview of the
recent results in this research field.
Data from epidemiological reports
and laboratories have shown that
isoflavones have multi-biological
and pharmacological effects in ani-
mals and humans. These include
estrogenic and antiestrogenic ef-
fects, cell signalling conduction, as
well as cell growth and death.
Based on these properties, soy pro-
tein and isoflavones have been as-
sociated with reduced incidences of
breast and prostate cancers, cardio-
vascular diseases or osteoporosis,
and exhibit some other favorable

effects. The mechanism through
which isoflavones may exert the
above-mentioned functions are not
only based on the estrogenic prop-
erties of isoflavones, but also on
their role as protein tyrosine ki-
nase inhibitors, as regulators of
gene transcription, modulators of
transcription factors, antioxidants,
as well as by altering some enzyme
activities. However, to draw a clear
conclusion regarding the clinical
use of isoflavones further investi-
gation would be required, although
only a few effects of short- or long-
term use of soy proteins are known
in humans.
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Introduction

Plant-derived, nonsteroidal weakly-estrogenic com-
pounds are defined as phytoestrogens, and may act as
fungicides, deter herbivores, regulate plant hormones,
and protect plants against ultraviolet radiation [1].
There are at least 20 phytoestrogen compounds found in
nature. They have been identified in at least 300 differ-
ent plants from more than 16 different plant families [2].
Plants related to human and animal food such as
seasonings (garlic, aniseed, fennel, caraway, parsley),
legumes (soybeans, chick peas, clover), grains (wheat,
barley,rye,rice and oat),vegetables/herbs (carrots,pota-
toes, alfalfa, red clover), fruits (apples, pears, grapes,

dates, pomegranates, cherries), and drinks (beer, coffee)
also contain phytoestrogens. Chemically, phytoestro-
gens can be divided into several classes, for example,
isoflavones, coumestans, and lignans [3]. Indol-3-
carbinol, a hydrolysis product of glucosinolates, also 
has estrogenic activity [4]. The main feature of the
chemical structure of isoflavones is strikingly similar 
to mammalian estrogens. While phytoestrogens act
mainly by binding to the second subtype of estrogen
receptor (ERβ), a higher binding affinity to the “classic”
ERα has been identified for mammalian estradiol 
[5, 6]. For this reason, phytoestrogens can act either 
as estrogen agonists or as antagonists [7, 8]. Among 
the classes of phytoestrogens, isoflavones have been 
the most extensively researched. Therefore, the aim of
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this paper was to review recent progress on isoflavone
research.

Isoflavone sources, absorption and metabolism

Soybeans and soy products are a particularly abundant
source of isoflavones. They contain approximately
0.2–1.6 mg of isoflavones/g dry weight [3]. Chick peas
and other legumes, as well as clover, toothed medic, and
bluegrass are other isoflavone sources [9]. The principal
isoflavones found in soy proteins and soy foods are
daidzein, genistein, and glycitein. Each of them is found
in four chemical forms: the unconjugated form, or agly-
cone; the conjugated form, or glucoside (daidzin,
genistin, and glycitin); acetylglucoside; and malonylglu-
coside. The soy isoflavones daidzein and genistein pri-
marily appear in the form of their glucosides, daidzin
and genistin, respectively [10, 11]. Processing and fer-
mentation of the soybean is known to influence the
forms of isoflavones [12]. The bioavailability and bio-
logical activities of different isoflavones also differ to
some extent [13,14].Moreover, the estrogenic potency of
equol is higher than its precursor, daidzein [8].

After ingestion, the conjugated form of isoflavones is
hydrolyzed by intestinal β-glucosidases, which release
the principal bioactive aglycones, daidzein and genis-
tein. These compounds may be absorbed or further me-
tabolized in the distal intestine with the formation of
specific metabolites, such as equol and p-ethylphenol
[11]. Three native β-glucosidases have been identified in
humans [15]. The first is glucocerebrosidase, being a
lysosomal enzyme which hydrolyses glucoceramide
from endogenous membrane glycolipids.Another is lac-
tase phlorizin hydrolase, which is a membrane-bound
enzyme found in the brush-border of the small intes-
tine, and is primarily responsible for hydrolysis. The
third β-glucosidase is a broad-specificity cytosolic en-
zyme found in abundance in the liver, kidney, and small
intestine of mammals. Some intestinal bacteria produce
β-glucuronidases, which can deconjugate these
isoflavone metabolites when they pass through the in-
testine [11]. The aglycones along with any bacterial
metabolites are absorbed from the intestinal tract and
transported via the portal venous system to the liver,
where the isoflavones and their metabolites are effi-
ciently conjugated with glucuronic acid (95 %), and to a
lesser extent are found as sulfate conjugates [16]. They
are then excreted in the urine or in the bile [14]. Some
isoflavones undergo enterohepatic recycling. It has been
proposed that intestinal metabolism is essential for their
subsequent absorption and bioavailability in the body.
However, Andlauer et al. [17] reported that genistin was
partly absorbed without previous cleavage. Piskula et al.
[10] also demonstrated that both aglycones and their
glucosides are absorbed very fast. These results contra-

dict the above assumption. The results from Izumi et al.
[18] showed that the isoflavone aglycones were ab-
sorbed faster and in greater amounts than their gluco-
sides in humans. The peak concentrations of isoflavones
in blood are seen generally 4–8 h after dietary intake [11,
19]. Most of the daidzein and genistein are excreted in
urine within the first 24 h after food intake [20, 21]. The
rate of urinary excretion of daidzein was greater than
that of genistein throughout the postmeal period [22].
Differences are observed in the elimination half-life for
different studies.Watanabe et al. [23] found that after in-
gestion of 60 g baked soybean powder, the half-lives of
plasma genistein and daidzein were 8.36 and 5.79 h, re-
spectively. While with the same foods, from King and
Bursill’s [22] research, the elimination half-lives were 4.7
and 5.7 h for daidzein and genistein, respectively. More
rapid elimination is observed for isoflavones in a liquid
matrix than in a solid matrix [11].

In ruminant animals, the absorption of isoflavones
takes place mainly in the rumen, where the gastroin-
testinal epithelium is the major site of metabolism.
The liver contributes very little to the total degradation
of isoflavones in ruminants [16]. Metabolism of iso-
flavones in pigs is not as well documented. The pig
seems to differ markedly in comparison with ruminants
regarding conjugation of equol. Only 50–70 % of equol
was found in the conjugated form, whereas the corre-
sponding figure for conjugated equol in plasma from
cow and sheep is 95–99 %.

The presence of different populations of microflora
in the human gut may influence the bioavailability of
isoflavone phytoestrogens and causes wide inter-indi-
vidual variation in isoflavone metabolite excretion [13,
24]. The reasons for the considerable inter-individual
variation in isoflavone metabolism following the con-
sumption of soybean isoflavones have not been fully elu-
cidated. Recent data from a human intervention study of
soy-containing food (low or high in isoflavones) showed
that the proportion of energy from fat affects phyto-
estrogen excretion in the urine. Dietary fat intake de-
creases the capacity of gut microbial flora to synthesize
equol [25]. Further investigations in phytoestrogen
bioavailability of the different types of gut microflora
are needed.

Isoflavones can be detected in many tissues of ani-
mals and humans.Yueh and Chu [26] reported the tissue
distribution of daidzein in rats 15 min after intravenous
injection of 40 mg daidzein/kg body weight. Daidzein
concentration was found to be high in plasma, liver,
lung, and kidney at about 30 µg/g wet weight; to be mod-
erate in skeletal muscle, spleen, and heart at about 15
–20 µg/g wet weight; and to be low in brain and testis at
about 2–5 µg/g wet weight. In another experiment rats
were exposed to genistein at 5, 100 and 500 µg/g feed
[27]. Tissues including brain, liver, mammary, ovary,
prostate, testis, thyroid and uterus showed significant
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dose-dependent increases in total genistein concentra-
tion. This research also found that the liver contained
the highest amount of genistein while brain tissue accu-
mulated less genistein, as compared to other tissues.
Similar results for daidzein were obtained by Janning et
al. [28], who found that the daidzein levels were usually
three- to fivefold higher in the liver and kidney than in
plasma.

Plasma concentrations of 50–800 ng/mL (approx.
0.2–3.2 µmol/L) were found for daidzein, genistein, and
equol in adults consuming modest quantities of soy
foods containing ~ 50 mg/d of isoflavones [8, 29, 30]. In
response to the consumption of soy foods, blood
isoflavone concentrations can reach ≤ 6 µmol/L [13].
When soy is consumed on a regular basis, plasma
isoflavone levels far exceed normal physiological estra-
diol concentrations, which in men and women generally
range between 40 and 80 pg/mL [8]. These observations
led to the hypothesis that isoflavones would be biologi-
cally active,conferring health benefits that could explain
the relatively low incidence of hormone-dependent dis-
eases in countries in which soy is a dietary staple.

Biological effects

■ Hormonal effects

Since 1931 it has been known that soybeans contain rel-
atively high concentrations of isoflavones [31]. Genis-
tein glycoside was first isolated from soybeans by Walter
[32]. However, it was unknown whether these com-
pounds could have biological activity in animals until
the recognition of the infertility syndrome in sheep cor-
related with the hormonal potency of isoflavones [33].
Isoflavones are structurally similar to mammalian en-
dogenous estrogens [8],and thus may act as estrogen ag-
onists or antagonists [34], depending on the isoflavone
concentration,or the tissue of action.They act mainly by
binding to the ERβ [5, 6], which was found to be ex-
pressed in many tissues, including the hypothalamus,pi-
tuitary gland, lung, and thymus.

Isoflavones have been shown to possess an estrogen
hormone function. They have been shown to induce
specific estrogen-responsive gene products and stimu-
late the genital tract of female animals. In rodents and
rats, isoflavones were also found to stimulate mammary
and uterine growth [35]. But compared to estradiol, the
isoflavone estrogenic effects are weak. In the mouse
uterine growth assay, genistein and daidzein are roughly
100,000 times less effective than estradiol [5].

The hormonal actions of isoflavones might explain
epidemiologic observations of lowered risk for chronic
diseases and menopausal symptoms in populations that
consume soy. However, effects of soy consumption on
hormonal metabolism have been inconsistent among

most studies, probably as a result of methodological dif-
ferences in subjects characteristics, study design,
isoflavone form, dosage, and length of diet period. Very
often, soy isoflavones have been provided as different
soy protein sources (soy protein isolate, soy milk, tex-
tured vegetable protein) so that the resulting effects
could not be direct proof for the action of isoflavones.

Soy isoflavones appear to affect the menstrual cycle
and concentrations of reproductive hormones in pre-
menopausal women. Cassidy et al. [36, 37] found that
premenopausal women consuming 60 g textured soy-
bean (containing 45 mg isoflavones) experienced a 2.5 d
increase in the length of their follicular phase whereas
no change was noted in women fed on a similar amount
of soybeans from which the isoflavones had been chem-
ically removed. Particularly noteworthy is the finding
that serum follicle stimulating hormone and luteinizing
hormone levels decreased significantly in response to
the consumption of soybean isoflavones. It can not be
fully concluded, however, from this study that iso-
flavones are responsible for the observed effects since
ethanol treatment also extracts other bioactive com-
pounds. Results similar to those found by Cassidy et al.
[36, 37] were reported for premenopausal Japanese
women by Nagata et al. [38]. However, a recent study
failed to find an effect of soybean isoflavones on men-
strual cycle length or estrogen levels [39]. In post-
menopausal women, the effects of soy isoflavones on en-
dogenous estrogen metabolism were shown to be less
pronounced than in premenopausal women [40, 41].

Moreover, it was observed that dietary genistein ex-
erts estrogenic effects upon the hypothalamic-pituitary
axis in rats, increases plasma prolactin [35], and en-
hances both GHRH-stimulated cAMP accumulation and
GH release in rat anterior pituitary cells [42]. Genistein
and daidzein suppressed glucocorticoid and stimulated
androgen production in cultured human adrenal corti-
cal cells [43].

At high dosages, isoflavones may act as antagonists of
estrogen. They have generally been reported to have
lower binding affinity for estrogen receptors and a lower
potency in producing estrogenic effects compared with
17β-estradiol. Thus, when isoflavones displace 17β-
estradiol molecules, it can reduce the function of real es-
trogen [8]. At concentrations 100–1000 times that of
estradiol (the probable levels in human plasma after reg-
ular isoflavone consumption), isoflavones may be able to
compete effectively with endogenous mammalian estro-
gens, bind the ERs, and prevent estrogen-stimulated
growth in mammals [5]. This may also result in interfer-
ence with the release of gonadotropins and interruption
of the feedback-regulating system of the hypothalamus-
pituitary-gonadal axis. Genistein and coumestrol have
been shown to competitively suppress the binding of
17β-(3H)estradiol to ERα when added to rat and human
mammary tumor tissue. Daidzein and equol have been
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demonstrated to compete effectively with 17β-
(3H)estradiol for rat uterine estrogen nuclear type II
binding site (bioflavonoid receptor) with a 50 % in-
hibitory concentration (IC50) of 1–10µM [44].

In summary, soy protein consumption appears to ex-
ert various hormonal effects. But, the resulting health
benefits are of uncertain clinical significance. Further
research is required to determine whether the responsi-
ble components are the isoflavones or some other soy
constituents.

■ Regulating sex hormone receptors 
at the transcription level

Cotroneo et al. [45] found that at pharmacological con-
centrations (500µg/g body weight), genistein decreased
ERα mRNA levels in the rat uterus. It was also found that
daidzein is capable of down-regulating androgen recep-
tor and ERα mRNA expression significantly in rat uteri
[46]. Our recent research has demonstrated that feeding
daidzein to sows late in their pregnancy can markedly
inhibit ERβ mRNA levels in the hypothalamus of new-
born piglets. No changes were detected in the pituitary
[47] indicating the possible central effects of daidzein on
the neuroendocrine system. Kuiper et al. [5] found
genistein and daidzein stimulated estrogen-dependent
receptor gene activity at concentrations ranging from
10–1000 nM in cell cultures. Interestingly, some results
indicated soy isoflavones increase nerve growth factor
mRNA and brain-derived neurotrophic factor mRNA in
rats [48, 49].

■ Influence cell signalling

Isoflavones, particularly genistein, can regulate the cell
signalling conduction from receptor expression to cyto-
plasmic downstream signalling. Pharmacological doses
of genistein (500 µg/g body weight) directly inhibited
EGF receptor expression in the rat uterus and vagina
[50]. Dalu et al. [51] also reported that genistein (1 mg/g
diet) can downregulate both EGF and ErbB2/Neu recep-
tors in the rat prostate with no apparent adverse toxicity
to the host.Since Akiyama et al. [52] found that genistein
inhibits tyrosine protein kinase activity, there have been
more than 2000 published articles on this subject. Many
of the peptide growth factor signal transduction path-
ways that were implicated in certain cancers involve the
action of tyrosine kinases. Therefore, a circulating tyro-
sine kinase inhibitor, such as genistein, may have bene-
ficial effects in the treatment of cancer. In androgen-in-
dependent human prostate carcinoma DU145 cells,
genistein significantly inhibited the transforming
growth factor (TGF)-α-caused activation of membrane
receptor erbB1, followed by inhibition of downstream

cytoplasmic signaling target Shc activation [53]. Re-
cently, genistein has been shown to alter ion channel
function of culture cells.Genistein (50 µM) reversibly re-
duced the peak currents of the A-type voltage-gated
potassium channel in cloned Chinese hamster ovary
cells [54] and inhibited Ca2+ fluxes in rat pituitary cells
[55]. Similar results were also obtained for daidzein in
the above mentioned investigations, although the effect
of daidzein was weaker than that of genistein.

■ Cell proliferation, animal growth and development 

Most isoflavone studies on cell proliferation were per-
formed using estrogen-dependent human breast carci-
noma MCF-7 cells. The results displayed biphasic ef-
fects: stimulation of growth at low concentrations and
inhibition at high concentrations. Hsu et al. [56] re-
ported that cell growth was stimulated at a daidzein con-
centration of 0.25 µg/mL whereas the addition of
daidzein at concentrations > 25 µg/mL significantly in-
hibited cell growth in a dosage-dependent fashion.Also,
Wang and Kurzer [57] showed that genistein and
biochanin A, at 0.1–10 µM, induced cell DNA synthesis
150 –235 %, while at 20–90 µM, inhibited DNA synthesis
by 50 %. Similar results for genistein were also reported
by Wang et al. [58]. Using the differential display reverse
transcriptase polymerase chain reaction assay,Hsu et al.
[56] demonstrated that the growth inhibitory effects of
daidzein might be mediated through a block at the G1
stage of the cell cycle.

Soy and alfalfa are used as protein sources in most
animal diets, and therefore the animals ingesting these
diets are continually exposed to isoflavone compounds.
Moreover, isoflavones can freely pass the placental bar-
rier. In humans the isoflavone concentrations in the
neonate are similar to those in maternal plasma [59].Re-
search has reported that isoflavones at concentrations
found in a standard natural-ingredient diet may affect
the sexual differentiation of female rats in uteri [6]. At
high dietary concentrations (100 mg/100 g feed), genis-
tein decreased body-weight gain, while increasing the
uterine:body weight ratio of female rats [6]. There are a
few publications about the effects of isoflavones on body
growth, especially on farm animal growth. Soy
isoflavones decreased fat and increased lean content in
barrows when fed within the dietary concentrations
found in typical corn-soybean meal diets but not when
fed to gilts at concentrations above those present in
corn-soybean meal diets [60]. Liu et al. [61] demon-
strated that daidzein fed to pregnant sows promoted fe-
tal growth, improved sow milk production and affected
the postnatal growth. Other results from rats report the
reverse effect [6, 62]. Our recent experiments on sows
confirmed the results of Liu et al. [61]. We found when
sows were fed with daidzein the expression of IGF–1R



M. Q. Ren et al. 139
Biological and clinical properties of isoflavones

gene in longissimus muscle of newborn piglets was en-
hanced markedly [47]. This result suggests that daidzein
may one way influence fetal growth is via up-regulation
of IGF–1R expression in skeletal muscle.

Pharmacological and therapeutic effects

■ Anti-cancer

Several papers have reviewed the potential roles of soy
or its isoflavones in decreasing the risk of cancer
[63–66]. Most of the support comes from epidemiologi-
cal studies. Epidemiological data suggest that a diet rich
in isoflavones provides protection against several forms
of cancer, particularly those that are hormone-depen-
dent, such as breast, prostate, and lung cancer [66]. Tofu
consumption has been negatively correlated with
prostate, breast, and lung cancer, as well as leukemia in
China and Japan [67], where people consume more soy-
bean products than people in western countries. Fur-
thermore, Asian people who have emigrated to Western
countries and who generally adopt the dietary habits of
the host country are at an increased risk for breast and
other hormone-dependent cancers compared to those
in their original countries [68]. In vitro data have
demonstrated that isoflavones inhibit cancer cell
growth, including prostate cancer cells [69, 70] and
MCF–7 human breast cancer cell line [71]. There are lit-
erally hundreds of in vitro studies showing that genis-
tein inhibits the growth of a wide range of both hor-
mone-dependent and hormone-independent cancer
cells with IC50-values between ~5 and 100 µmol/L (2–25
µg/mL) [reviewed in 72]. The concentration of genistein
required to inhibit angiogenesis in vitro was reported to
be higher than the genistein concentration likely to be
achieved in vivo [72, 73]. However, it has been found that
isoflavones in vitro can be also active at physiologically
relevant concentrations (< 5–6 µmol/L) [44, 74].

In animal studies, neonatal injections of pharmaco-
logic doses of genistein have been shown to suppress the
development of dimethylbenzanthracene (DMBA)-in-
duced mammary adenocarcinomas in rats [75]. So far,
there have been very few human studies to reveal direct
evidence that soy intake or isoflavones may protect
against breast cancer.

Xu et al. [76, 77] suggested that isoflavones may exert
cancer-preventive effects by decreasing estrogen syn-
thesis and altering metabolism away from genotoxic
metabolites toward inactive metabolites. Recently, Lu et
al. [68] found that daily consumption of the soya diet
(providing 113–207 mg/day of total isoflavones) reduced
circulating levels of 17β-estradiol by 25 %, and of pro-
gesterone by 45 % compared with levels during the con-
trol diet period for healthy and regularly cycling women.

It has become apparent that the anti-cancer mecha-

nisms of isoflavones are not exclusively via the estrogen
receptor. In vitro studies have revealed that numerous
mechanisms may be involved. One is via inhibiting pro-
tein tyrosine kinases (see above). Many of the peptide
growth factor signal transduction pathways have been
proven to be implicated in certain cancer development.
Therefore,a circulating tyrosine kinase inhibitor such as
genistein may have beneficial effects in the treatment of
cancer [67]. However, in several cell lines, genistein did
not alter tyrosine phosphorylation of the EGF receptor
or other tyrosine kinase substrates [78]. Dalu et al. [51]
reported genistein inhibited the expression of the EGF
receptor in the rat dorsolateral prostate, suggesting that
genistein has its effects through transcriptional pro-
cesses rather than directly on tyrosine kinase activity.
Therefore, it is possible that the variable effects of
isoflavones in estrogen-sensitive tissues may depend on
the production of paracrine and autocrine growth fac-
tors that cause proliferation of cells not expressing ERα
or ERβ [78]. Other anti-cancer mechanisms of iso-
flavones may include inhibition of 3β-hydroxysteroid
dehydrogenase, 17β-hydroxysteroid dehydrogenase, 5α-
reductase and aromatase [63, 66, 79], followed by affect-
ing the level of active steroid hormones. Isoflavones also
inhibited DNA topoisomerase I and II activity [80–82],
which were predicted to cause DNA damage. The tran-
scription factor p53 currently has become the most im-
portant tumor suppressor [83]. It has been shown that
genistein induced the up-regulation of p53 protein [84].
More recently, it was suggested that genistein may in-
hibit cell growth by both increased expression [85] and
production [86] of transforming growth factor (TGF) β1
signaling pathways. Hsu et al. [56] suggested that the
inhibitory effects of biochanin A, the precursor of
daidzein, on human breast cancer growth are linked to a
decreased level of inducible nitric oxide synthesis and
thus an inhibition of the production of nitric oxide and
the later induction of cell apoptosis. Davis et al. [87] re-
ported that genistein induced apoptosis by inactivation
of NF-κB, providing a mechanism by which genistein
promotes cell death.Another mechanism to partially ex-
plain the anti-cancer activity of isoflavones involves
their ability to inhibit angiogenesis, or new blood vessel
growth, which is required for tumor growth. Genistein is
capable of blocking this process [88, 89]. Today, one of
the most exciting approaches to cancer treatment in-
volves angiogenesis inhibitors, such as a synthetic agent
endostatin [90], and genistein may be its natural coun-
terpart.

It is worth noting, however, that the preventative ef-
fects of soy are not as definite as commonly believed.
Certain references describe adverse effects of
isoflavones in relation to breast cancer. Obviously, the
isoflavones dose is crucial to increase or decrease cancer
risk (see “cell proliferation”). In vitro, studies have
demonstrated that genistein enhanced the proliferation
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of estrogen-dependent human breast cancer (MCF-7)
cells at concentrations as low as 10 nM, with a concen-
tration of 100 nM achieving proliferative effects similar
to those of 1 nM estradiol. At higher concentrations (>
20 µM), genistein inhibits MCF–7cell growth. Moreover,
dietary genistein (750 ppm) was also able to stimulate
mammary gland growth and enhance the growth of
MCF–7 cell tumors in athymic mice in vivo indicating
that genistein acted as an estrogen both in vitro and in
vivo [91]. In another in vivo experiment with athymic
mice containing xenografted MCF–7 tumors, it was
shown that feeding high dosages of genistein (750 ppm)
or genistin (1200 ppm) resulted in increased tumor
growth rates and cell proliferation. Removal of the
isoflavones from the diet resulted in tumor regression
[92]. Soy diets containing varying amounts of genistein
stimulated the growth of estrogen-dependent (MCF–7)
tumors in a dose-dependent manner [93]. Similar re-
sults were also reported by Santell et al. [73].

Peeters et al. [94] estimated that the real protective ef-
fect of phytoestrogens may be smaller than expected or
only limited to premenopausal women. Finally, meta-
analysis of Trock et al. [95] demonstrated that recom-
mendations for women to increase their soy intake to
prevent breast cancer or prevent its recurrence are pre-
mature and that larger, more rigorously controlled stud-
ies are required. New data from an epidemiological
study suggest a positive association between soy intake
and percent mammographic densities among a popula-
tion of women from different ethnic groups living in
Hawaii [96].Nutritional effects before puberty were pre-
sumed as important as for breast development and can-
cer risk. Similar conclusions were drawn by Lamar-
tiniere et al. [97] and Murrill et al. [98].

Moreover, soy intake in premenopausal women may
increase breast cancer risk by elevating the levels of pro-
lactin. Preliminary data suggested positive relations be-
tween estrogenic effects, plasma prolactin levels, and
breast cancer risk [35, 99].

■ Lowering the risk of cardiovascular diseases 

Many investigations have demonstrated that soy protein
inhibits cardiovascular diseases and reduces atheroscle-
rosis risk in animals and humans [64,100,101].The ben-
eficial effects of soy are thought to be caused primarily
by isoflavones and appear to be mediated by many
mechanisms. Most researchers consider that these ef-
fects result from a reduction of plasma low density
lipoprotein (LDL) cholesterol [102–104] and triglyc-
eride concentrations [104, 105]. Hamilton and Carroll
[106] were the first to report that soy protein lowered
plasma cholesterol in hypercholesterolemic rabbits.
Many reports confirmed these findings to some extent.
In October 1999, the US Food and Drug Administration

acknowledged the health claim regarding the beneficial
effects of soy-based foods on a heart-healthy diet. The
agency reviewed research from 27 studies that showed
soy protein’s value in lowering levels of total cholesterol
and low-density lipoprotein [107]. Other mechanisms
for inhibiting cardiovascular disease include lowering
diastolic blood pressure in women [108], improving vas-
cular and endothelial cell function [109,110].There is an
indication that soy protein may also inhibit platelet ac-
tivation and aggregation and reduce the amount of sero-
tonin in the platelets [111]. However, this result should
be considered carefully since alcohol-washed, isolated
soy protein was used.

Studies with transgenic mice [112] and in the human
liver [113] suggest that the benefits of soy protein on cho-
lesterol lowering may be mediated through an up-regu-
lation of LDL-receptor activity, thus, providing a novel
mechanism of plasma cholesterol reduction different
from currently available diets and hypolipidemic drugs.
Otherwise, the results from some researchers indicated
that the hypocholesterolemic effects of soy protein may
function by influencing lipid metabolism through alter-
ing lipid-related gene expression. For example, isolated
soy protein and isoflavone-containing extract reduced
hepatic apolipoprotein A–1 mRNA levels in gerbils [102].
The results of Tikkanen et al. [114] showed that intake of
soy protein containing 60 mg isoflavones per day may
provide protection against oxidative modification of
LDL. The oxidative modification of LDL particles is con-
sidered to be a prerequisite for the uptake of LDL by
macrophages in the artery wall,which is an initial step in
the formation of atheroma. Thus, this may be one of the
mechanisms of soy protein inhibition of atherosclerosis.
Recent studies suggested that estrogen-induced cardio-
vascular protection might be mediated by an increased
synthesis of vascular nitric oxide [71].

Currently, the mechanisms associated with soy’s ben-
eficial effects on cardiovascular health are not fully un-
derstood. All of the above mechanisms may potentially
contribute to the observed beneficial effects. It remains
unclear which components of soy protein contribute to
its protective effects. It is possible that soy substances
other than isoflavones such as saponins, phytic acid,
protein components, amino acid composition or a pro-
tein-isoflavone interaction may be involved in the multi-
farious processes. The ability of saponins to lower cho-
lesterol in some species is especially well known [115].
In a recent study, the anti-atherogenic effects of an
isoflavone aglucone-rich extract compared with a
saponin-rich extract (both without soy protein) in cho-
lesterol-fed rabbits were investigated. It was shown that
the isoflavone aglucone-rich extract inhibited progres-
sion of atherosclerosis while the saponin-rich extract
was without effect [116]. New data demonstrating that
milk protein causes a comparable effect on lowering to-
tal- and LDL-cholesterol as soy protein with and without
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isoflavones are of interest [117]. Studies investigating
the effects of soy protein and its constituents, especially
with clinical conditions, are needed to further clarify
these observations. Evidence in humans is still scanty
[111].

■ Other diseases

Estrogen is used in hormone replacement therapy to
prevent menopausal symptoms and osteoporosis in
postmenopausal women [118]. But estrogen has been
proven to be associated with an incidence of breast and
endometrial cancer [119]. This relationship has severely
hampered the clinical use of estrogen.Therefore, there is
growing interest to use isoflavones as a potential alter-
native to the estrogens in hormone replacement therapy.
Observational studies have shown a lower incidence of
menopausal symptoms and osteoporosis in Asian
women who have a diet rich in soy products [63,65,120].
In clinical studies, menopausal women who consumed
isoflavone-enriched foods have alleviated symptoms as-
sociated with hot flashes [121, 122]. Another study has
reported no beneficial effects of isoflavone on hot
flashes [123]. Thus, data are currently insufficient to
draw definitive conclusions regarding the use of
isoflavones for the treatment of menopausal symptoms.

Osteoporosis is characterized by a loss of bone mass
usually associate with aging, due to increased bone re-
sorption and reduced bone formation. Approximately 1
million Americans suffer fragility fractures each year at
a cost of over 14 billion dollars [118]. Thus, the preven-
tion of osteoporosis is a major public health concern.
The beneficial effects of estrogen replacement therapy
(ERT) on prevention of postmenopausal osteoporosis
are well known. But owing to the above addressed rea-
sons, more researchers have begun turning to
isoflavones as an alternative therapy. Data from animal
studies suggest that isoflavones could prevent bone loss
that occurs as a result of estrogen deficiency, such as in
ovariectomy rats [124–127]. Results from Yamaguchi’s
group have shown that daidzein and genistein stimu-
lated osteoblastic bone formation [128–130], and inhib-
ited osteoclastic bone resorption [131]. Data available
from human studies about the effect of isoflavones on
osteoporosis are limited. Potter et al. [132] showed a
dose between 50 and 90 mg per day seems to be needed
to show a skeletal benefit in postmenopausal women.
Recently, Alekel et al. [133] reported soy isoflavones at-
tenuated bone loss from the lumbar spine in peri-
menopausal women. Somekawa et al. [134] revealed
consumption of soy products is associated with in-
creased bone mass in postmenopausal Japanese women.
However, other investigations failed to find the bone-re-
pairing effect of isoflavones in postmenopausal women
[135, 136]. Therefore, the impact of genistein and

daidzein on bone loss appears to be minimal. However,
one or more of the isoflavone metabolites may prove to
be a clinically useful agent in the prevention and treat-
ment of osteoporosis.

Moreover, there are results suggesting that midlife
tofu consumption accelerates brain aging [137]. Higher
midlife tofu consumption was independently associated
with indicators of cognitive impairment and brain atro-
phy in late life. It was hypothesized that isoflavones in
tofu may cause, at least in part, a neurodegenerative
process.

■ Immune system

It is well known that estrogen has an important effect on
the immune system. For example, most autoimmune
diseases are more common in women than in men and
quite frequently begin under conditions when estrogen
levels change dramatically, e. g., during puberty,
menopause, or pregnancy [138, 139]. The exact mecha-
nisms involved in these metabolic processes have yet to
be determined. The gastrointestinal tract and the im-
mune system have often been overlooked, and not been
considered as targets of estrogen. However, ERβ has
been found to be very highly expressed in the human
thymus and the gastrointestinal tract. Therefore, some
of the immuno-modulatory effects of estrogen might be
mediated via ERβ. Daidzein, in vitro, has been proven to
increase the activation of murine lymphocytes [74]. In
another in vitro study of Zhang et al. [44], it was shown
that isoflavone glucuronides might not only compete
with endogenous estrogen to inhibit estrogen-depen-
dent proliferation of cancer cells. They are also able to
activate natural killer cells to potentially increase the
immune defenses of the body against cancer at nutri-
tionally relevant concentrations.

In mice, it was found that daidzein at high dosages
(20 and 40 mg/kg) enhanced several immunologic func-
tions [140]. Our recent results showed that daidzein is
inclined to promote the IGF–1R gene expression in thy-
mus of pigs.Moreover, the sows given daidzein delivered
more living piglets than sows without daidzein feeding
[47]. Isoflavones have also demonstrated an anti-in-
flammatory potential in various animal models, includ-
ing chronic ileitis [141], inflammation-induced corneal
neovascularization [142], and ischemia reperfusion in-
jury [143]. However, any potential anti-inflammatory
benefit of an isoflavone diet needs to be balanced by the
possibility that such dietary modifications may also be
detrimental. For example, data indicated that a soy ex-
tract containing mixed isoflavones results in reduced
antigen-induced eosinophilia in the lung in the guinea
pig model with asthma [144]. This effect was accompa-
nied by an increase in antigen-induced leakage of pro-
tein into the airspace.
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Cellular and molecular mechanisms 
of isoflavone effects

It has become apparent from the diversity of isoflavone
properties that no single action can explain many of the
effects of isoflavones. A growing body of literature sug-
gests that isoflavones exert multifunctions through ge-
nomic and nongenomic mechanisms of cellular regula-
tion. First, isoflavones have a similar structure to
estradiol and are capable of binding to the two estrogen
receptors, ERα and ERβ. Secondly, isoflavones can inter-
act with membrane proteins (receptors) and exert an ef-
fect that is expressed through secondary messengers in
the cytoplasm [64].

Since discovery of a second estrogen receptor, ERβ
[145], it is necessary to re-evaluate the molecular basis
for the action of estrogen and its agonist. Structurally,
ERβ is highly homologous to ERα in the DNA binding
domain (> 95 % amino acid identity) but shows only
55 % homology in the ligand binding domain [138].
These structural differences lead to different relative
binding affinities in ligand binding assays. Compared
with ERα, isoflavones have a greater relative binding
affinity to ERβ [5, 6, 146], while estradiol binds to ERα
and ERβ with equal affinity. Studies by structural biolo-
gists [147] demonstrated that genistein is completely
buried within the hydrophobic core of the protein and
binds in a manner similar to 17β-estradiol. However, in
the ERβ-genistein complex, the activation-function
(AF)–2 helix (H12) does not adopt the distinctive “ago-

nist” position but instead lies in a similar orientation to
that induced by estrogen antagonists. Such a specific he-
lix is consistent with genistein’s partial agonist character
in ERβ [148, 149].

Early observations showed the rapid affect of steroid
hormones on cardiovascular, central nervous, and re-
production functions [150]. These phenomena are in-
compatible with traditional steroid hormone action, i.e.,
by triggering genomic events. Therefore, some cellular
effects of steroids could occur via nongenomic mecha-
nisms [151]. There are recent findings from cell lines
that ERα and ERβ can associate with the G protein and
protein kinase A (PKA) to activate many of the intracel-
lular cascades [152]. For example, genistein potentiated
GHRH-stimulated cAMP accumulation in a concentra-
tion-dependent manner [42]. Estrogen membrane re-
ceptors have been detected in GH3/B6 rat pituitary tu-
mor cells by antibodies [153]. Wehling [150] predicted
that in the near future the cloning of the cDNA for the
first membrane receptor for steroids should be achieved.
Once a G-protein-coupled ER has been cloned and the
cellular cascades associated with its activation identi-
fied, it will be possible to characterize the multiplicity of
actions of estrogen and isoflavones.
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